39 地球物理测井技术研究——以声波测井为例_职称驿站
论文发表指导_期刊投稿推荐_期刊论文发表咨询_职称驿站

论文发表指导,期刊推荐,国际出版

职称驿站学术导航
关闭职称驿站导航

论文发表职称晋升 全方位咨询服务

学术出版,国际教著,国际期刊,SCI,SSCI,EI,SCOPUS,A&HCI等高端学术咨询

地球物理测井技术研究——以声波测井为例

来源:职称驿站所属分类:物理论文
发布时间:2012-12-26浏览:78次

  摘要:在工程地质勘察中采用钻探方法,有时由于钻探工艺和操作水平等原因,岩芯采取率很低,或者在钻探过程中,由于机械破坏作用使岩体的物理状态发生了变化,使岩芯呈砂状和碎块状,对于现场技术人员很难判断地层的真实情况,甚至于造成误判和错判,但是通过一定的手段对孔壁的物理性质进行检测,可以判断地层岩石的真实情况,声波测井就是检测钻孔内孔壁情况的一种方法。本文阐述了声波测井原理,并通过一工程实例说明声波测井在工程地质勘察中的应用。

  [关键词]:测井,原理, 应用

  地球物理测井,简称测井,它是应用地球物理方法划分钻孔剖面、评价地层进而解决某些地质问题的一门技术科学。按勘探对象的差异,测井分为油田测井、煤田测井、金属与非金属测井、水文与工程测井以及地基勘察测井等。

  我国煤田测井开始于1955年,50年代中期至70年代末,煤田测井主要是模拟测井,测井参数从50年代中期的电阻率、自然电位、人工电位、电极电位和电流等电学参数,到50年代末期增加了核测井。70年代试验了三侧向、声波、选择伽玛——伽玛、双源距密度、中子测井、地层产状、连续测斜和超声成相等新方法,从而,煤田测井跨上了新的历史时代。一方面,加强单孔解释中对薄煤层和夹矸划分的研究,使煤层分层定厚的精度居世界前列,另一方面开始多孔解释,进行测井曲线的地层对比,扩大了测井资料的地质应用范围,实行了对仪器的刻度,开展了测井资料的半定量、定量分析。

  随着科学技术的发展和煤田地质对测井技术的要求,模拟测井已不能满足当今煤田地质技术要求。80年代初,我国煤田开始引进国外数字测井技术,相继生产出适应我国煤田特点和固体矿产勘探的数字测井仪,并形成方法系列化的补偿密度组合探管电法测井探管、声波测井探管、岩性密度组合探管和地层倾角探管配套设备,为我国煤田测井数字化完成了第一次飞跃。目前,我国煤田测井采用的主要方法有:电测井方面有普通电阻率测井、侧向测井和自然电位测井;核测井方面有自然伽玛测井、双源距密度测井、选择伽玛——伽玛测井和中子测井;声波测井主要有声波测井和声幅测井等,已全部实现了测井数字化,能获取大量测井信息。 声波测井由于其仪器携带方便,测试方法简单,在地质勘察中获得了广泛应用。现以声波测井工程实例说明声波测井在工程地质勘察中的应用。

  1测试原理

  声波测井测试原理如图所示,发射换能器(T)将声波仪发射机输出的具有一定功率的电信号转化为声信号发出后,二个接收换能器(R1和R2)则分别接收声信号转变为电信号,输入到声波仪的输入系统中。在发射点与二个接收点之间,会形成一个复杂的声场,发射出的声波经过井液射向井壁,一部分透过井壁进入岩石中(透射波),一部分反射回来(反射波),其中以临介角i入射这一部分则在井壁上产生滑行波,另外还有一部分直接沿井液传播(直达波)。不同的声波走时都不相同,因井液的波速小于岩石的波速,所以滑行波最先到达接收器。形成信号波形的初始起跳,一般称为"初至”。分别读出二个接收换能器初始起跳的声时,按下式即可计算岩体的纵波波速:

  Vp=ΔL /(T2—T1)

  其中:Vp为纵波波速,单位m/s;ΔL为二个接收换能器的跨距,单位m;T2为二号接收换能器初始起跳的声时, T1为一号接收换能器初始起跳的声时,单位s。

  一般说来,波速的大小主要与岩石的密度、表面破碎程度、裂隙或节理发育程度以及岩石的孔隙度、胶结程度、风化程度等因素有关。

  由现场和实验室研究表明,岩体的密度高、单轴抗压强度大则纵波波速高;岩体越致密,岩体声速越高;结构面(层面、节理、裂隙等)的存在,使得声速降低;岩体风化破碎程度大则声速低。 因此,纵波波速的大小在一定程度上反映了岩体的完整性和风化程度。

  3.工程实例

  某高速公路大桥,一桥墩位于可溶性岩石—灰质白云岩的山间谷地中,谷地中覆盖层为红粘土厚度约6.0m,在地质钻探揭穿红粘土后,在6.1~9.3m深度中,岩芯呈砂状和碎块状,9.3~18m岩芯完整,呈长柱状。这种情况对于6.1~9.3m段地质情况判断造成困难。为了探明该段内的地质情况,技术人员决定采用中国科学院武汉岩土力学研究所生产的RSM-SY5型声波检测仪,换能器为单孔圆管径向式,资料用RSMSY5声波仪检测程序进行分析处理。

  通过对该钻孔的声波测试, 6.1~9.3m段声波速度最高为6000m/s,最低为4200 m/s,平均5500 m/s,而9.3~18m段声波速度最高为6500m/s,最低为4500 m/s,平均5600 m/s。两段内声波速度相差不大,据此可以判断,6.1~9.3m段岩芯破碎是由于钻探机械原因而造成的,地下岩体基本完整,此段可以作为基础的持力层。后来施工时根据现场开挖结果表明,该桥墩下6.1~9.3m段为完整基岩,与原来判断情况一致。

  4.声波测井缺点

  声波测井作为勘察的一种手段,由于其便捷性和操作简单性获得较为广泛的应用。但是,就像任何事物都具有两面性一样,声波测井也有自己的局限性,首先它的探头要有媒质和孔壁接触,在平常就选用水作为这种媒质材料。如果在岩体节理裂隙发育的岩体钻孔中进行声波测试,这时由于钻孔漏水而使孔内无水,孔中没有探头与孔壁连接的媒质物体,这就使得声波测井不能进行,虽然有时可以注水进行测量,但是由于受水流的影响,测试数据的可靠性就会降低。再者,声波测井只能是测试孔壁的岩体的完整程度,但是对于岩体的完整程度却没有办法测量,当然,这个缺陷也可以通过跨孔声波测试来克服。其次,声波数据还受孔壁光滑程度等成孔质量因素影响,使得测试数据有一定的偏差。

  5.小结

  煤田测井的数字化,可以提供更多的地质信息,使用好数字测井系统,是测井数字化的关键,另外,熟练掌握测井基本原理与相关知识,也是完成数字测井的前提,新型数字测井系统更是推动煤田测井数字化进展的动力。声波测井作为一种勘察方法,由于其所无可比拟的优点,在工程地质勘察中获得了广泛的应用,本文从声波测井的测试原理出发,通过工程实例对声波测井在地质勘察中得应用,同时又对声波测井的缺点做了阐述,使读者对声波测井有一个基本全面的认识,对于推广声波测井在勘察中的应用起到推到作用。

  参考文献:

  1、张凤威 《煤田地球物理测井》 1981年,煤炭工业出版社《中国煤田地球物理勘探》1981年,煤炭工业出版社

  3、陈仲候 《工程与环境物探》 1993年,地质出版社

《地球物理测井技术研究——以声波测井为例》

本文由职称驿站首发,您身边的高端学术顾问

文章名称: 地球物理测井技术研究——以声波测井为例

文章地址: https://m.zhichengyz.com/p-21072

相关内容推荐
肠道免疫相关的SCI期刊推荐9本
高级工程师职称评定要发论文还是出版著作
41本民族学与文学方向AMI收录期刊
土木工程2区sci期刊推荐9本
A类核心学术论文难发吗
教师职称专著对第一作者单位有要求吗
博士出书的最佳时间,理清3个环节,出版会及时
公共卫生、环境卫生与职业卫生SSCI期刊推荐6本
未能解决您的问题?马上联系学术顾问

未能解决您的问题?

不要急哦,马上联系学术顾问,获取答案!

免费获取
扫码关注公众号

扫码关注公众号

微信扫码加好友

微信扫码加好友

职称驿站 www.zhichengyz.com 版权所有 仿冒必究
冀ICP备16002873号-3