39
学术出版,国际教著,国际期刊,SCI,SSCI,EI,SCOPUS,A&HCI等高端学术咨询
来源:职称驿站所属分类:建筑施工论文 发布时间:2020-11-04浏览:32次
摘 要:为研究端板厚度和连接方式对装配式偏心支撑钢框架抗震性能的影响,进行了2个不同端板厚度的偏心支撑半刚接钢框架和1个焊接连接的偏心支撑刚接钢框架的拟静力试验.结合试验研究结果,对装配式偏心支撑钢框架试件的破坏形态、荷载-位移滞回曲线、骨架曲线、侧移延性系数、等效粘滞阻尼系数进行了深入分析.试验结果表明:螺栓端板连接偏心支撑钢框架抗震性能良好.端板厚度对装配式偏心支撑钢框架耗能能力具有一定影响,端板厚度由16 mm增加到24 mm,由于破坏延迟,耗能梁段极限剪切承载力提高43.32%. 同时,受高强螺栓-端板连接滑移的影响,偏心支撑半刚接钢框架滞回曲线呈“弓形”,表现出一定的“捏缩”现象.
关键词:装配式;偏心支撑;半刚性;抗震性能;拟静力试验
中图分类号:TU375 文献标志码:A
文章编号:1674—2974(2020)09—0048—09
《建筑施工》Building Construction(月刊)1979年创刊,其内容套萃精英、博采众长,凸现中华建筑施工之大成,是中国自然科学建筑类核心期刊,向以实用著称,主要介绍国内外最新的建筑施工、设备安装、建筑材料、饰面装潢和工程质量事故防治经验。
偏心支撐钢框架结构体系兼有中心支撑框架结构体系和抗弯钢框架结构体系的优点.不仅具有较高弹性刚度,同时具有较大的延性[1-6]. 目前,偏心支撑钢框架的设计(如AISC341—2016[7]、 CSA-S16—2014[8]、GB 50011—2010[9]),各构件均采用焊接方式连接在一起.一方面,这不利于工厂预制、现场拼装的装配式建筑.另一方面,耗能梁被设计为地震作用下通过明显的塑性变形消耗地震能量,结构需要在震后进行构件更换,焊接连接方式使得修复变得困难且耗时.
为了克服半刚性连接框架过柔和焊接偏心支撑框架震后修复困难、花费昂贵、耗时长的缺点,本文将偏心支撑钢框架和半刚性连接相结合,形成一种新型抗震结构,即装配式偏心支撑钢框架结构.这种结构各构件之间均采用高强螺栓端板连接[10],减少施工现场焊接施工,震后直接更换受损构件,有效提高维修加固效率,非常适合装配式建筑.
本文设计了2个采用高强螺栓连接的偏心支撑钢框架试件,1个采用焊接连接方式的偏心支撑框架试件.为实现耗能梁率先屈服的设计理念,耗能梁采用具有较低屈服点的Q235B钢材,其他构件采用屈服点较高的Q345B钢材[11-14]. 通过拟静力试验方法研究装配式偏心支撑钢框架滞回性能、承载力、刚度退化、延性、累计耗能、等效粘滞阻尼及耗能梁的转动承载力和剪切承载力.同时,通过试验现象观察半刚接钢框架与偏心支撑协同工作机理和破坏机理,为工程应用提供依据.
1 试验概况
1.1 试验试件
试件原型为6层钢框架结构,层高3.6 m,跨度6 m,试验试件按1 ∶ 2缩尺比例设计,取层高1.8 m,跨度3 m.各构件按《建筑抗震设计规范》(GB 50011—2010)[9],《钢结构设计标准》(GB 50017—2017)[15],并参考美国钢结构房屋抗震设计规程AISC341—2016 Seismic Provisions for Structural Steel Building[7]对试验框架进行承载力验算.偏心支撑钢框架的设计原则是强柱、强支撑、弱耗能梁段,耗能梁作为结构中最先屈服的构件,强度不能过高.基于上述原则,试样中各构件截面和材料如表1所示.
试验共有3个试件.为研究端板厚度对偏心支撑框架结构的影响,设计的2个半刚性连接试件耗能梁长度均为600 mm,端板厚度分别为16 mm和24 mm.各构件之间均采用10.9级M20高强螺栓连接.同时,为与传统的焊接连接试件进行对比,设计的焊接连接试件耗能梁长度亦为600 mm.试件详细信息如表2所示.端板及加劲肋的材料均为Q235B钢材.试件模型如图1和图2所示,试件尺寸如图3和图4所示,图中尺寸单位为mm.
1.2 材性参数
试验所用钢材的材性试验结果如表3所示.
1.3 测量方案
为准确检测各构件进入塑性状态的顺序,在试件各构件上布置了应变片和应变花,耗能梁段是研究的重点构件,因此在耗能梁翼缘和腹板处,布置了15个应变片和3个应变花.为测量层间侧移,在柱顶处布置两个水平方向位移计用于测量结构侧移.耗能梁上部布置4个竖向位移计,用于测量耗能梁转角.试验测量方案如图5所示.
1.4 加载制度
试验加载采用力-位移混合控制加载制度,先以力控制加载,试件达到屈服状态时改用位移控制,直至试件破坏. 试验加载制度如图6所示.
根据《建筑抗震试验规程》(JGJ/T 101—2015)[16]:采用荷载控制时应分级加载,接近开裂或屈服荷载前宜减小级差加载;试件屈服后采用变形控制,变形值取屈服时试件的最大位移值,并以该位移的倍数为级差进行控制加载;每级施加反复荷载3次.
1.4.1 力控制阶段
首先,利用竖向作动器在试件柱子顶端施加200 kN的轴向压力来模拟框架柱子承受的轴压,并保证在整个试验过程中始终保持不变,待框架试件在轴压荷载下反应稳定之后开始施加水平位移荷载,水平荷载维持在±100 kN范围内,确保试件与试验装置良好接触;反复试验3次检查试验监测的传感器和应变片是否正常工作,查看监测应变片,最大应变达到表3中数值时,即可确定框架首先产生塑性应变的位置,并确定屈服荷载位移δy,试件的屈服位移和屈服荷载如表4所示.
1.4.2 位移控制阶段
在预加载阶段确定节点试件δy之后,水平作动器全部回归至零位,按照图6的加载方式进行正式加载.作动器以推为正向荷载,反之为负向荷载.每等级荷载正负施加3个循环.在试验过程中若发现构件断裂、局部有明显的屈曲破坏、框架侧移角达到5%或试验监测的滞回曲线中的力低于极限承载力的85%,则终止试验[16].
1.4.3 试验装置
试验采用两个垂直方向2 000 kN液压伺服作用器分别对两个柱施加轴压,采用一个水平方向1 000 kN液压伺服作动器施加水平荷载.为防止框架较大的平面外变形,采用侧向限位装置.试验装置如图7所示,试验现场如图8所示.
2 试验现象与失效模式
2.1 试验现象
PDKB-2在低周往复试验加载过程中的试验现象如表5所述. PDKB-5与PDKB-2试验现象相似,不再赘述.
PDKB-2试件试验现象如图9所示,8倍屈服位移时,耗能梁翼缘出现屈曲变形,端板焊缝断裂;PDKB-5试件试验现象如图10所示,7倍屈服位移时,左侧梁端板与翼缘焊缝断裂;PDKW-2试件试验现象如图11所示,8倍屈服位移时,耗能梁翼缘-腹板整体屈曲变形,腹板撕裂.
2.2 失效模式
试件PDKB-2和PDKB-5的破坏现象如图9和图10所示,试件PDKW-2的破坏现象如图11所示.各试件失效集中发生在耗能梁上,基本实现耗能梁屈曲变形耗能、其他构件保持弹性的设计理念. 通过应变片检测数据,各构件柱脚处均出现塑性变形.试件PDKB-2和PDKB-5试件耗能梁与结构梁、结构梁与斜撑连接处端板均出现不同程度的翘曲变形.试件耗能梁破坏机制如表7所示.
3 试验结果及分析
3.1 耗能梁转动承载力和剪切承载力
图12所示为偏心支撑钢框架耗能梁与侧移角之间的关系[17-19],图中:L是跨距,h是层高,δ是侧移.K形偏心支撑钢框架耗能梁转角可按公式(1)进行计算:
试验水平方向采用一个1 000 kN液压伺服作动器进行加载. 耗能梁剪力Vlink和作动器荷载Factuator之间的关系按公式(2)计算[20].
根据《建筑抗震设计规范》(GB 50011—2010),耗能梁段剪切承载力VP设计值为:
式中:tf和tw分别为耗能梁段翼缘厚度和腹板厚度;Fy为耗能梁段屈服强度;d为梁截面高度.
表8为试验测试位移和作动器荷载结果.从结果可知,随端板厚度增加,偏心支撑半刚接钢框架极限侧移角增大,端板厚度为24 mm试件的极限侧移角较厚度为16 mm试件提高46.95%.与焊接试件PDKW-2相比,试件PDKB-2极限侧移提高17.3%,试件PDKB-5极限侧移提高达72.3%.而承载力方面,焊接试件PDKW-2表现出更强的承载力,半刚接连接试件PDKB-2最终承载力較焊接连接试件降低19.9%,PDKB-5最终承载力降低16.4%.
表9为各试件耗能梁转角和剪切承载力的测试结果.所有试件耗能梁的塑性转角均超过AISC341—2016规范限值.装配式偏心支撑钢框架的耗能梁表现出更好的塑性转动能力.耗能梁段剪切承载力均超过设计值218.8 kN,PDKB-2、PDKB-5和PDKW-2的超强系数分别为1.7,1.8和2.1.
3.2 滞回性能
图13为不同端板厚度试件滞回曲线对比图,从图可以看出,PDKB-2和PDKB-5的滞回曲线呈“弓形”,具有捏缩现象.主要是由于螺栓端板连接,在加载过程中出现了滑移. PDKB-2破坏前滞回曲线走势与PDKB-5基本一致,说明端板厚度对装配式偏心支撑钢框架滞回性能影响有限. PDKB-5滞回曲线包围的面积更大,主要是由于耗能梁-框架梁-支撑连接处受力状态复杂,PDKB-2端板连接处出现了过早破壞.适当增加端板厚度,可以改善端板连接处由于过早破坏对结构耗能造成的不利影响. 图14为不同连接方式试件滞回曲线对比图,从图可以看出,PDKW-2滞回曲线呈“梭形”,曲线饱满、稳定、无捏缩现象,但是极限侧移较PDKB-5试件小.
3.3 骨架曲线
图15所示为不同端板厚度试件骨架曲线对比图,分析可知:PDKB-2和PDKB-5骨架曲线无明显下降段,说明螺栓端板连接的偏心支撑框架结构在加载后期仍具有较强的承载能力.随端板厚度的增加,极限承载力变化较小,但极限侧移出现增大趋势.
图16所示为不同连接方式试件骨架曲线对比图,PDKW-2极限承载力较PDKB-5高,但极限侧移较小. 同时,PDKW-2骨架曲线出现较为明显的下降段,说明焊接连接的偏心支撑框架在加载后期承载力较螺栓端板连接的偏心支撑框架差.
3.4 刚度退化曲线
框架的抗侧刚度在屈服荷载之前为荷载-位移关系曲线的切线刚度,框架进入塑性承载状态之后,荷载与位移表现出明显的非线性特性,为方便起见,进入塑性状态之后常用割线刚度来表示框架的抗侧刚度. 考虑到拟静力试验中往复施加荷载,框架的承载力与相对应的位移有正负之分,所以其割线刚度根据同一级荷载下正反方向承载力绝对值之和与对应峰值位移绝对值之和的比值来确定,即由式(3)计算来确定框架的抗侧刚度.
Fj为某一级荷载作用下的荷载峰值,Δj为某一级荷载作用下荷载峰值对应的侧移. 表10为各试件的初始刚度.
为了分析框架刚度退化的程度,将所有框架的屈服状态下的抗侧刚度定义为框架的初始抗侧刚度,把各个框架的刚度按公式(4)进行归一化,随着荷载等级的增加,其抗侧刚度会在初始刚度的基础上发生退化.试件刚度退化曲线如图17所示.
图17和图18为试件的刚度退化曲线图,反映了模型结构刚度退化规律. 分析可知:端板厚度对模型试件刚度退化有一定影响,加载初期,PDKB-5的刚度退化程度较PDKW-2更为明显,随后两者刚度退化速率相似,最终极限状态下,PDKB-2刚度退化至初始刚度的19.9%,PDKB-5刚度退化至初始刚度的37.3%.连接方式对模型试件的刚度退化亦有显著影响. PDKW-2刚度退化至初始刚度的32.7%.说明焊接连接的试件在加载后期亦有较高的抗侧刚度.
3.5 累计耗能
图19为各试件累计耗能图,分析可知:端板厚度对偏心支撑钢框架累计耗能有一定影响.端板厚度从16 mm增大到24 mm,累计耗能提高50%,主要是由于端板厚度增加,结构的破坏延迟. PDKW-2与PDKB-5累计耗能接近,说明经过合理设计,螺栓连接的偏心支撑框架具有与焊接连接偏心支撑框架相当的耗能能力.
3.6 侧移延性系数
结构侧移延性系数是结构屈服后的后期变形能力的重要衡量指标.采用极限侧移Δu与屈服侧移Δy的比值来描述:
屈服位移Δy由“通用屈服荷载法”[21]确定. 如图20所示.
由公式(4)计算结构延性系数如表11所示,分析可知,随端板厚度增加,结构的侧移延性系数减小.较薄端板连接试件PDKB-2的延性系数略高于焊接连接试件PDKW-2.
3.7 等效粘滞阻尼系数
框架的等效粘滞阻尼系数he能够更加合理地评定其在循环往复荷载作用下吸收能量和消耗能量的能力. 依据图21,按公式(6)计算出节点的等效粘滞阻尼系数见表12所示.
依据表12对偏心支撑半刚接钢框架试件等效粘滞阻尼系数进行如下分析:随端板厚度增加,试件等效粘滞阻尼系数略有降低;构件连接方式对试件延性系数影响较大,半刚性连接试件PDKB-2的等效粘滞阻尼系数较刚接试件PDKW-2提高43.4%,试件PDKB-5较试件PDKW-2提高25.5%,说明带半刚性节点的偏心支撑框架吸收和耗散地震能量的能力较焊接连接的偏心支撑钢框架更强.
4 结 论
论文采用拟静力试验方法研究了装配式偏心支撑钢框架滞回性能、承载力、刚度退化、延性、累计耗能、等效粘滞阻尼及耗能梁的转动承载力和剪切承载力. 同时,通过试验现象观察半刚接钢框架与偏心支撑协同工作机理和破坏机理. 得到如下结论:
1)端板厚度对装配式偏心支撑钢框架抗震性能影响有限. 适当增加端板厚度,可以改善端板连接处由于过早破坏对结构耗能造成的不利影响.端板厚度由16 mm增加到24 mm,由于破坏延迟,耗能梁极限弹塑性转角提高46.25%,极限剪切承载力提高43.32%,结构极限侧移角提高46.95%,结构延性系数降低14.68%.
2)与焊接连接方式相比,高强螺栓端板连接试件PDKB-5的侧移角提高72.31%,等效粘滞阻尼系数提高25.5%,耗能梁极限弹塑性转角提高70.8%,但极限剪切承载力降低16.46%.
3)高強螺栓端板连接偏心支撑具有更强的耗能能力,各构件通过高强螺栓连接,震后修复加固更容易,花费少且工期短,满足装配式建筑结构抗震设防要求.
参考文献
[1] SINA K A,CEM T. A review of research on steel eccentrically braced frames[J].Journal of Constructional Steel Research,2017,128:53—73.
[2] MOHAMMADREZAPOUR E,DANESH F. Experimental investigation of bolted link-to-column connections ineccentrically braced frames[J]. Journal of Constructional Steel Research,2017,147:236—246.
[3] LEILA H N,MOHSEN T. Equation for achieving efficient length of link-beams in eccentrically braced frames and its reliability validation[J].Journal of Constructional Steel Research,2017,130:53—64.
[4] MANHEIM D N,POPOV E P. Plastic shear hinges in steel frames[J]. Journal of Structural Engineering,1983,109 (10):2404—2419.
[5] 李腾飞,隋龑,苏明周,等. 偏心支撑框架子结构实时混合仿真试验研究[J]. 湖南大学学报(自然科学版),2018,45(11):46—53.
LI T F,SUI Y,SU M Z,et al.Study on real time hybrid simulation test of an eccentricallybraced frame as test sub-structure[J].Journal of Hunan University (Natural Sciences),2018,45(11):46—53.(In Chinese)
[6] 石永久,熊俊,王元清,等. 多层钢框架偏心支撑的抗震性能试验研究[J].建筑结构学报,2010,31(2):29—34.
SHI Y J,XIONG J,WANG Y Q,et al. Experimental studies on seismic performance of multi-story steel framewith eccentric brace[J].Journal of Building Structure,2010,31(2):29—34. (In Chinese)
[7] ANSI/AISC341—2016 Seismic provisions for structural steel buildings[S]. Chicago:American Institute of Steel Construction,2016:50—55.
[8] CSA-S16—2014 Design of steel structures[S].Mississauga:The Canadian Standards Association,2014:137—143.
[9] GB 50011—2010 建筑抗震设计规范[S]. 北京:中国建筑工业出版社,2010:55—63.
GB 50011—2010 Code for seismic design of buildings[S].Beijing:China Architecture Industry Press,2010:55—63.(In Chinese)
[10] 王元清,张一舟,施刚,等. 半刚性端板连接多层钢框架的Push-over分析[J]. 湖南大学学报(自然科学版),2009,36(11):10—14.
WANG Y Q,ZHANG Y Z,SHI G,et al.Push-over analysis of multistory steel frame with semi rigid end-plate connections[J]. Journal of Hunan University(Natural Sciences),2009,36(11):10—14.(In Chinese)
[11] LIAN M,SUM Z. Seismic performance of high-strength steel fabricated eccentrically braced frame with vertical shear link[J]. Journal of Constructional Steel Research,2017,137:262—285.
[12] ADRIANA I,AUREL S,DAN D,et al. Experimental validation of re-centring capability of eccentrically braced frames with removable links[J]. Engineering Structures,2016,113:335—346.
[13] 段留省,蘇明周,郝麒麟,等. 高强钢组合K 形偏心支撑钢框架抗震性能试验研究[J]. 建筑结构学报,2014,35(7):18—25.
DUAN L S,SU M Z,HAO Q L,et al. Experimental study on seismic retrofit of high strength steel compositeK-type eccentrically braced frames[J].Journal of Building Structures,2014,35(7):18—25.(In Chinese)
[14] SILVIA C,NICOLA M,WALTER S. Experimental tests on real-scale EBF structures with horizontal and vertical links[J].Steel and Composite Structures,2018,28(2):123—138.
[15] GB 50017—2017 钢结构设计标准[S]. 北京:中国建筑工业出版社,2017:94—110. (In Chinese)
GB 50017—2017 Code for seismic design of buildings [S]. Beijing:China Architecture Industry Press,2017:94—110. (In Chinese)
[16] JGJ/T 101—2015 建筑抗震试验规程[S]. 北京:中国建筑工业出版社,2015:9—13.
JGJ/T 101—2015 Specification for seismic test of buildings[S].Beijing:China Architecture Industry Press,2015:9—13.(In Chinese)
[17] ELLINGWOOD B R. Earthquake risk assessment of building structures [J]. Reliability Engineering and System Safety,2017,74(3):251—262.
[18] HJELMSTAD K D,POPOV E P.Characteristices of eccentrically braced frames[J]. Jounal of Structural Engineering,1984,112(2) :340—344.
[19] AHMET K,CEM T. Design over strength of steel eccentrically braced frames[J].International Journal of Steel Structures,2013,13(3):529—545.
[20] WANG J F,ZHANG H J,JIANG Z. Seismic behavior of blind bolted end plate composite joints to CFTST columns[J]. Thin-Walled Structures,2016,108:256—269.
[21] 姚谦峰. 土木工程结构试验[M]. 2版. 北京:中国建筑工业出版社,2010:158—172.
YAO Q F. Structure test of civil engineering[M]. 2nd ed. Beijing:China Architecture and Building Press,2010:158—172. (In Chinese)
《装配式偏心支撑钢框架拟静力试验研究》
本文由职称驿站首发,您身边的高端学术顾问
文章名称: 装配式偏心支撑钢框架拟静力试验研究
上一篇:桥梁加固中碳纤维材料的应用
扫码关注公众号
微信扫码加好友
职称驿站 www.zhichengyz.com 版权所有 仿冒必究 冀ICP备16002873号-3