学术出版,国际教著,国际期刊,SCI,SSCI,EI,SCOPUS,A&HCI等高端学术咨询
来源:职称驿站所属分类:智能科学技术论文 发布时间:浏览:85次
前言
全球定位系统(GlobalPositioningSystem-GPS)经近10年我国测绘等部门的使用表明,GPS以全天候、高精度、高效率等显著特点,赢得广大测绘工作者的信赖,并成功地应用于大地测量等测绘学科,给测绘领域带来一场深刻的技术革命。目前,大多数的城市首级控制网均采用GPS测量,而其中的高程控制主要采用传统的几何水准测量方法建立高精度的水准网。GPS高程测量却常常被忽视,认为其精度不太可靠。因此,为探讨城市GPS测量高程拟合成果的精度与起算点分布、起算成果精度、高程拟合数学模型、GPS数据处理软件的关系,对GPS网(一)测量GPS高程拟合的工作,对GPS拟合高程的精度进行了探讨,以供城市测量GPS用户参考。GPS已经被广泛地运用并已发展成为一个真正的三维测量工具,然而测高问题仍然是GPS领域函待研究解决的问题。
地面监控部分
GPS工作卫星的地面监控系统目前主要由分布在全球的一个主控站、三个信息注入站和五个监测站组成。对于导航定位来说,GPS卫星是一动态已知点。星的位置是依据卫星发射的星历——描述卫星运动及其轨道的参数算得的。每颗GPS卫星所播发的星历,是由地面监控系统提供的。卫星上的各种设备是否正常工作,以及卫星是否一直沿着预定轨道运行,都要由地面设备进行监测和控制。
地面监控系统另一重要作用是保持各颗卫星处于同一时间标准——GPS时间系统。
用户设备部分
GPS信号接收机的任务是:能够捕获到按一定卫星高度截止角所选择的待测卫星的信号,并跟踪这些卫星的运行,对所接收到的GPS信号进行变换、放大和处理,以便测量出GPS信号从卫星到接收机天线的传播时间,解译出GPS卫星所发送的导航电文,实时地计算出观测站的三维位置,甚至三维速度和时间,最终实现利用GPS进行导航和定位的目的。
静态定位中,GPS接收机在捕获和跟踪GPS卫星的过程中固定不变,接收机高精度地测量GPS信号的传播时间,利用GPS卫星在轨的已知位置,解算出接收机天线所在位置的三维坐标。而动态定位则是用GPS接收机测定一个运动物体的运行轨迹。GPS信号接收机所位于的运动物体叫做载体讨口航行中的船舰,空中的飞机,行走的车辆等)。载体上的GPS接收机天线在跟踪GPS卫星的过程中相对地球而运动,接收机用GPS信号实时地测得运动载体的状态参数(瞬间三维位置和三维速度)。
接收机硬件和机内软件以及GPS数据的后处理软件包,构成完整的GPS用户设备。
近几年,国内引进了许多种类型的GPS测地型接收机。各种类型的GPS测地型接收机用于精密相对定位时,其双频接收机精度可达5mm+1PPM.D,单频接收机在一定距离内精度可达10mm+2PPM.D。用于差分定位其精度可达亚米级甚至厘米级。
目前,各种类型的GPS接收机体积越来越小,重量越来越轻,便于野外观测。GPS和GLONASS兼容的全球导航定位系统接收机已经问世。
GPS测量方面的限制
相位整周模糊度解算是否可靠直接影响三维坐标,对短边应用快速静态和实时动态(RTK)技术时,必须准确得到相位整周数,由于RTK常常使用最小量的数据,即使最好的算法有时也求解整周模糊度错误,为了发现这些能达到米级的错误,需通过重复观测来获取多余观测量。星历和参考坐标对三维坐标将产生几个PPM的影响,假定广播星历的质量一直保持如最近那般高,它对短边的影响将达到最小,但在世界上某些地区要获得一个理想的WGS84参考位置(±10M或更好)却存在着问题。
多路径效应的影响分为直接的或间接的,并能对三维坐标产生分米级的影响。
潮汐现象、包括陆地潮汐和海洋潮汐也对GPS测高产生影响,基线超过100KM时影响能达到厘米级,一些软件能通过建模来消除这些影响。
天线高是一个明显的误差来源。RTK系统通过使用定长的流动杆来减少这种误差的可能性。
大地水准面模型方面的限制
GPS测量得到的是椭球高(图1中的h),为了获得正常高(H),我们需知道高程异常值(N)。对长距离,GPS测量也能非常有效地得到椭球高,但会遇到大地水准面和高程基准面方面的问题。
为了提高高程精度,可以通过计算当地大地高模型并采用内插技术。长波部份由GGM计算,短波部份由当地重力值计算。然而,大地水准面精度不是唯一的限制性因素,它与高程基准面的联合使用也必须被考虑。
高程基准面方面的限制
在很多地区,使用已知的正常高或正高来定义高程基准面。有时,定义了多个高程基准面,每一个高程基准面都由一个原点(例如验潮站观测点)推算,该点的高程值由一个或几个潮汐的平均海水面值来决定。
机器监测和导引方面的应用
很多GPS厂家正着手改进RTK技术以应用于农业方面的自动监测和导引,以及地壳移动和建筑设备。这些应用同样受RTK应用一样的误差影响。高精度测量应用于工程方面的一个主要原因就是建筑过程中的各个环节生了误差累积。
结束语
对于GPS[]控制网基线测量,基线长度较短的情况下(10km左右,最大不超过20~30km),GPS[]的轨道误差(星历误差),太阳光压影响及美国SA技术基本对测量精度不发生影响(它只能影响单点定位和长基线测量结果)。
在作业过程中,在GPS[]接收机满足作业精度要求的情况下,测量的主要误差源是多路径误差、周跳和点位的对中误差。作业中应尽量避免它们的发生并减少其误差。
电离层延迟和对流层延迟主要影响基线测量两点间的高差精度,两点间高差愈大影响也愈大。如果改正公式和参数不恰当,它可能产生每1m高差就有1mm的误差,即1mm/m(误差/高差)。电离层和对流层延迟对平面坐标(L、B或X、Y)影响甚微,几乎没有影响。电离层和对流层延迟具有相关性,基线愈短相关性越强,在短基线测量中它们的影响会有很好的消除。这就是边长短于10km时,单频结果比双频结果精度高的原因。
参考文献:
[1]许其凤.GPS[]卫星导航与精密定位[M].北京:解放军出版社,1994.[!--empirenews.page--]
[2]李毓麟,等.在长距离GPS[]相对定位中的失周处理[A].高精度静态GPS[]定位技术研究论文集[C].北京:测绘出版社,1996.
[3]谢世杰.GPS[]接收机现状[J].石油物探装备,1995(1).
《浅谈GPS测高》
本文由职称驿站首发,您身边的高端学术顾问
文章名称: 浅谈GPS测高
扫码关注公众号
微信扫码加好友
职称驿站 www.zhichengyz.com 版权所有 仿冒必究 冀ICP备16002873号-3